

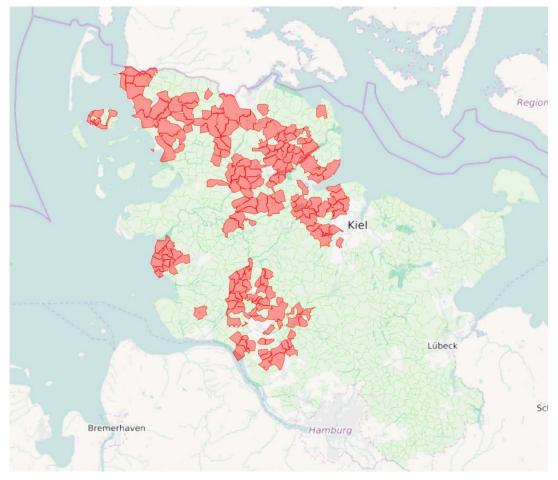
Schwimmbäder als zuschaltbare Lasten zur Nutzung des Überschussstromes in Wärme?

Ergebnisse aus der Vorstudie für die Energie- und Klimaschutz Schleswig-Holstein (EKSH) am Beispiel des Meerwasserwellenbades Eckernförde

11. EKI-Fachforum "Potenziale für Wärmespeicher in Schleswig-Holstein", 19. Juni 2018 in der FH Westküste, Heide, Hörsaal 01

Prof. Dr.-Ing. Reiner J. Schütt, Fachhochschule Westküste

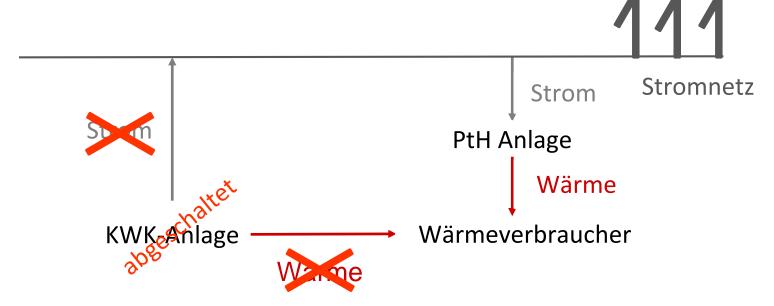
Folgen von Einspeisemanagement und Redispatch


- Verringerter Anteil der erneuerbaren Energie an der Energieversorgung durch abgeregelte Strommengen im Rahmen der Einspeisemanagementeinsätze
- Erhöhte Netzentgelte durch Entschädigungen für Einspeisemanagementeinsätze und Kosten für erforderliche Redispatch-Maßnahmen

Jahr	Prognostizierte abgeregelte Strommengen	Anteil Abregelung an EE- Stromerzeugung	Erwartete Entschädigungs- ansprüche für Abregelungen	Energie Redispatch	Kosten für Redispatch
2014	1.092 GWh	08.1 %	109 Mio. €		
2015	2.934 GWh	14.4 %	295 Mio. €		
2016	2.795 GWh	12.3 %	273 Mio. €	655 GWh	23 Mio. €
2017*	3.100 GWh	13.6 %	311 Mio. €		

Einspeisemanagement und Redispatch in SH, Quelle: MELUND, Bericht zum Engpassmanagement, 2017, S.4, * Prognose auf Basis Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen der Bundenetzagentur, Stand März 2018

Aktuelle Einspeisemanagement-Einsätze in Schleswig-Holstein



SH-Netzampel für den 1.3.2018, 16:00 Uhr, Quelle: www.netzampel.energy, Schleswig-Holstein Netz AG, 2018

Power-to-Heat als zuschaltbare Lasten zur Wärmenutzung

- Idee: Sektorkopplung bei KWK-Anlagen mit entsprechendem Wärmebedarf
- doppelter netzentlastender Effekt durch KWK-Abschaltung und Überschussstromnutzung
- Ausrichtung: Ergänzung großer KWK-Anlagen bei Stadtwerken mit lokalem Fernwärmenetz

Power-to-Heat-Anlage (PTH) als zuschaltbare Last für Betreiber mit Kraft-Wärme-Kopplungs-Anlagen (KWK-Anlage), Quelle: eigene Darstellung

Energiewirtschaftsgesetz (EnWG) §13, 6a: Regelung für Netzbetreiber

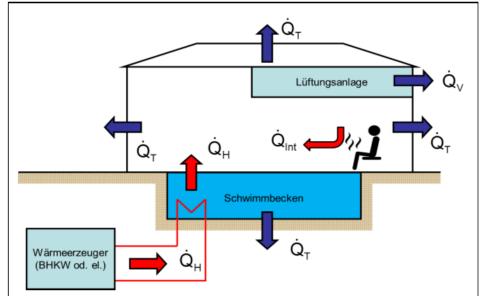
- Regelung für die Systemverantwortung von Übertragungsnetzbetreibern seit 1.1.2017
- Bilaterale Verträge zwischen Netz- und KWK-Betreiber für neu installierte P2H-Anlagen seit 1.1.2017 bis 31.12.2021
- Effiziente Anlage im Netzausbaugebiet, um Netzengpässe zu beheben (Investitionskosten geringer als eingesparte Kosten im Betrachtungszeitraum)
- Leistung KWK-Anlage > 500 kW
- Angemessene Vergütung für Laufzeit von mindestens fünf Jahren (kostenneutral)
- Keine Befreiung von Abgaben, Umlagen, Steuern für den in P2H-Anlage genutzten Strom
- 2000 h Betriebsstunden erforderlich bei einem Gaspreis von 10 €/MWh*
- Bis 31.05.2018 noch keine P2H-Anlage von Übertragungsnetzbetreibern unter Vertrag

*Quelle: Robert Hinterberger – Power-to-Heat Anlagen zur Verwergung von EE-Überschussstrom, vde/vdi-Konferenz Power-to-Heat, 12.6-13.6.2018, Berlin

Prüfung: Ergänzung von KWK-Anlagen in Schwimmbädern

Fragestellungen für das Meerwasserwellenbad Eckernförde (MWWBE):

- Thermisches Potenzial und netzentlastende Effekte
- Erforderliche anlagen-, elektro- und steuerungstechnische Ergänzungen des MWWBE
- Prüfung rechtliche und wirtschaftliche Rahmenbedingungen
- Folgerungen auf die Wirksamkeit des §13,6a des EnWG



Meerwasserwellenbad Eckernförde, Quelle: Stadtwerke Eckernförde

Wärmetechnisches Potenzial öffentlicher Schwimmbäder, hier des MWWBE

- Grundlage: BHKW mit 2 x 220 kW_{el}, 2 x 264 kW_{th} und Spitzenlastkessel mit 2 x 550 kW_{th}
- Wärmebilanz zur Berechnung von Aufheiz- und Abkühlzeiten aufgrund baulicher Daten
- Wärmebedarf MWWBE ganzjährig, BHKW-Betrieb über mehrere Stunden zum Aufheizen um 1 K, wenige Stunden zum Abkühlen um 1 K, größtes Entlastungspotenzial im Winter

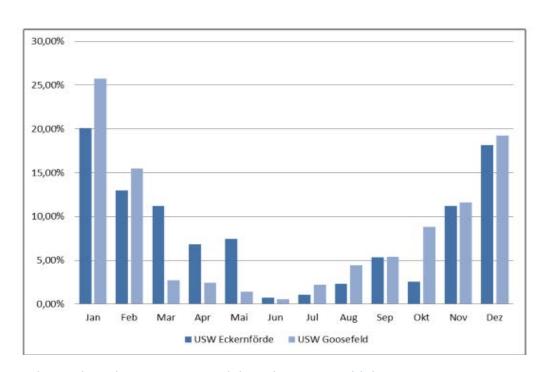
Schwimmbad-Wärmebilanz, Quelle: Buchmüller/Gehlert/Schütt, Schwimmbäder als zuschaltbare Lasten, 2017, S. 7

Monatsdaten öffentlicher Schwimmbäder, hier des MWWBE

Monat	Lufttemperatur	Erdtemperatur	Wärmeverluste	Aufheizzeit mit 600 kW	Abkühlzeit
Januar	1,3 °C	6,0 °C	454 kW	4,7 h	1,5 h
Februar	1,9 °C	5,5 °C	454 kW	4,7 h	1,5 h
März	4,6 °C	5,0 °C	438 kW	4,3 h	1,6 h
April	8,2 °C	6,5 °C	397 kW	3,4 h	1,7 h
Mai	12,1 °C	8,0 °C	351 kW	2,8 h	2,0 h
Oktober	9,8 °C	12,5 °C	332 kW	2,6 h	2,1 h
November	6,0 °C	11,0 °C	376 kW	3,1 h	1,8 h
Dezember	2,8 °C	8,5 °C	421 kW	3,9 h	1,6 h

Schwimmbad-Wärmebilanz und Jahresgang, Quelle: Buchmüller/Gehlert/Schütt, Schwimmbäder als zuschaltbare Lasten, 2017, S. 7 und S. 19

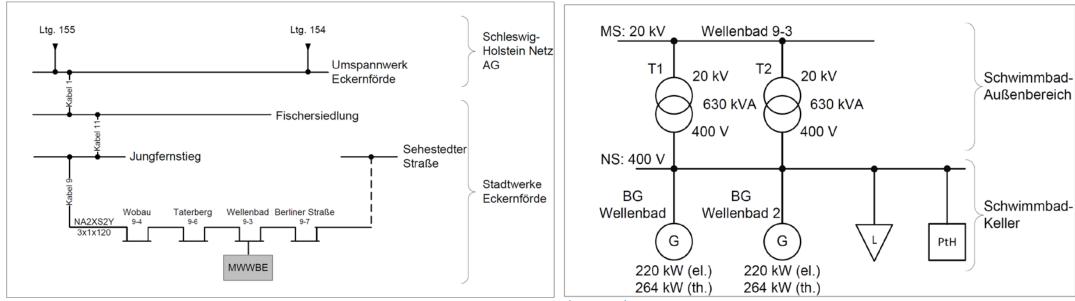
Kennwerte öffentlicher Schwimmbäder, hier des MWWBE


Jährliche Betriebswerte MWWBE	2016	Mittelwert über den Zeitraum 2013-2015
Betriebsstunden BHKW 1 in h	5.621	3.435
Erzeugte Wärmemenge BHKW 1 in MWh	1.473	903
Betriebsstunden BHKW 2 in h	4.081	3.963
Erzeugte Wärmemenge BHKW 2 in MWh	1.059	994
Gaseinsatz BHKWs in MWh	5.965	4.375
Erzeugte Wärmemenge BHKWs in MWh	2.532	1.897
Stromerzeugung BHKWs in MWh	2.001	1.483
Gaseinsatz Spitzenlastkessel in MWh	0.920	1.615
Erzeugte Wärmemenge Spitzenlastkessel in MWh	0.810	1.423
Gaseinsatz gesamt in MWh	5.966	5.990
Erzeugte Wärmemenge Gesamt in MWh	2.533	3.320
Stromverbrauch MWWBE gesamt in MWh	0.984	0.953
Stromeinspeisung SWE-Netz gesamt in MWh	2.001	1.483

Kennzeichnende jährliche Betriebswerte des MWWBE, Quelle: Buchmüller/Gehlert/Schütt, Schwimmbäder als zuschaltbare Lasten, 2017, S. 28

Typische Einspeisemanagement-Einsätze im Netzgebiet

- Typische Einsatzmonate für das Netzgebiet des MWWBE in Winter, Frühjahr, Herbst
- Typische Einsatzdauern für das Netzgebiet des MWWBE von mehreren Stunden



Monatliche Zuordnung der relativen Dauer und der relativen Anzahl der EinsMan-Einsätze 2016, Quelle: Buchmüller/Gehlert/Schütt, Schwimmbäder als zuschaltbare Lasten, 2017, S. 35 und S. 36

Anlagen-, elektro- und steuerungstechnische Ergänzungen

- Ergänzung um Widerstands- oder Elektrodenheizkessel oder Wärmepumpen möglich
- Vorhandene Mittelspannungs- und Niederspannungs-Netzinfrastruktur nutzbar
- Ergänzung der vorhandenen Steuerungstechnik mit 100/60/30/0-% Einspeisemanagement-Signal möglich

MS-Netzinfrastruktur und Netzanschluss des MWWBE, Quelle: Buchmüller/Gehlert/Schütt, Schwimmbäder als zuschaltbare Lasten, 2017, S. 34

Überprüfung der rechtlichen Randbedingungen nach §13, 6a EnWG

- Erforderliche elektrische Mindestleistung > 500 kW kann nicht eingehalten werden
- Pooling von mehreren BHKW nicht möglich
- Keine Förderung "überdimensionierter" PtH-Anlagen zum Ersatz von Spitzenlastkessel möglich
- Nur Kompensation des im Fall des Abrufes eingespeisten Stromes möglich, keine Überkompensation im Fall eines BHKW-Betriebes in Teillast bei Abruf möglich
- Keine Kombination mit weiteren Betriebskonzepten wie zum Beispiel Beteiligung an Regelenergiemärkten möglich

Überprüfung der wirtschaftliche Randbedingungen

- Während der Laufzeit der Vereinbarung mit dem Übertragungsnetzbetreibers (ÜNB): bestenfalls wirtschaftlich neutral
- Nach Auslaufen der Vereinbarung mit dem ÜNB: Wirtschaftlichkeit des Weiterbetriebs abhängig von Strompreis, Preisen am Regelleistungsmarkt und Preisen für fossile Brennstoffe, nach derzeitigem Stand droht Stilllegung der gerade neu errichteten PtH-Anlage
- Nach derzeitigem Stand nur der Einbau elektrisch betriebener Wärmepumpen als Ergänzung der BHKWs zu empfehlen

Zusammenfassung

- Ergänzung von KWK-Anlagen in Schwimmbädern durch Power-to-Heat-Anlagen möglich
- Verringerung der Einspeisemanagementeinsätze durch Lage und Betriebszeiten von Power-to-Heat-Anlagen in Schwimmbädern möglich
- Einbau, Nutzung der vorhandenen Netzinfrastruktur und erforderliche Ergänzung der Automatisierung technisch und wirtschaftlich sinnvoll
- Wirtschaftlicher Betrieb langfristig nur bei Realisierung von Power-to-Heat-Anlagen durch Wärmepumpensysteme möglich
- Bündelung mehrerer KWK-Anlagen in ausgedehnten Gebieten möglich
- Ungenutzte Potenziale der Schwimmbäder aufgrund Rahmendbedingungen §13, 6a EnWG

Vielen Dank!

Prof. Dr.-Ing. Christian Buchmüller, Energiewenderecht (buchmueller@fh-westkuest.de)

Prof. Dr.-Ing. Gunther Gehlert, Gebäudesystemtechnik (gehlert@fh-westkueste.de)

Prof. Dr.-Ing. Reiner Schütt, Netzintegration/Automation (schuett@fh-westkueste.de)

Dipl.-Ing. Dietmar Steffens, Geschäftsführer der Stadtwerke Eckernförde